[PDF] 生きた細胞内でグルココルチコイド受容体の分子機構を解明


ステロイドは細胞の中に入った後にグルココルチコイド受容体(GR)に結合します。ステロイドの結合したGRは、細胞の核内へ移行し、炎症に関与する遺伝子の発現を調節すると言われています。この結果として強力な抗炎症作用と免疫抑制作用が発揮されます。


デキサメタゾンは核内受容体の一種であるグルココルチコイド受容体

糖質コルチコイド(Glucocorticoid、グルココルチコイド)の薬は炎症や自己免疫疾患を治療するため広く処方されており、最近ではCOVID-19(SARSコロナウイルス2型感染症)の重症患者の治療にも用いられている。COVID-19は、発熱や息切れなどの症状から、多臓器不全などの重い合併症への急速に進行する。重症患者は「サイトカインストーム」(cytokine storm)を経験するが、このときにはもはやコロナウイルスに対する炎症反応を抑えることはできず、サイトカイン(炎症の分子メッセンジャー)の異常な産生がさらなる合併症を引き起こしてしまう。臨床試験では、糖質コルチコイド受容体に結合する強力な抗炎症薬であるデキサメタゾン(dexamethasone)を低用量で投与することにより、COVID-19入院患者の死亡率が低下したことが示されている。

私たちはこれまでに、道管分化をマスター因子としてNACドメイン転写因子をコードするVND6、およびVND7を同定した(Kubo et al., 2005, Genes Dev.; Yamaguchi et al., 2008, Plant J)。
そこで本研究では、これらマスター因子にヘルペルウイルスVP16の転写活性化ドメイン、およびラットのグルココルチコイドレセプタードメインを融合させることで、デキサメタゾン(DEX)依存的に活性が誘導されるコンストラクトを構築し、形質転換体を作出した。まず、シロイヌナズナに導入した形質転換体では、DEX処理することにより、植物体全体が白色化し死んでしまった。植物体を観察したところ、ほとんどの細胞が二次細胞壁を持つ道管細胞へと分化転換していた(図)。また、道管分化に関与する酵素や転写因子の多くがDEX処理により発現が誘導されており、二次細胞壁に多く含まれる多糖であるキシラン蓄積量も増加していた。さらに、このコンストラクトをシロイヌナズナやタバコの培養細胞やポプラに導入したところ、それぞれDEX依存的に分化転換した道管細胞が観察された。特に、タバコBY-2細胞において90%以上の細胞が分化転換するラインを確立することに成功した。

これらの結果は、今回構築したコンストラクトが、道管細胞分化の分子機構を解析するうえで非常に有効であることを強く示している。

フルチカゾンフランカルボン酸エステルはヒトグルココルチコイド受容体(GR)に対し ..

糖質コルチコイドは、(estrogen receptor)とともに核内受容体の仲間(ファミリー)に属している。これはリガンド結合ドメイン(ligand-binding domain)、DNA結合ドメイン(DNA-binding domain)、トランス活性化ドメイン(transactivation domain)という3つの部分で構成されている。ヒトの場合、この受容体のリガンドとして最もよくあるのがストレスホルモンの一つコルチゾール(cortisol)である。受容体がコルチゾールに結合すると、受容体の構造が変化し細胞質から核へと移動する。核内では、標的DNA配列に結合し遺伝子発現に影響を与えることができる。糖質コルチコイド受容体は活性化補助因子(coactivator)とも相互作用し、遺伝子発現のしくみをさらに調整することができる。受容体は柔軟なリンカーでつながれたいくつかのドメインで構成されているので、ドメインの構造は別々に決定された。デキサメタゾンに結合したリガンド結合ドメインの構造はPDBエントリー、DNAに結合したDNA結合ドメインの構造はPDBエントリーのものを示す。トランス活性化ドメインはここに示していない。これらのドメインがすべて一緒になり、コルチゾールの結合によって引き起こされる最初のメッセージが伝達される。

薬であるデキサメタゾンの構造は天然のコルチゾールの構造と非常によく似ている。このことにより、デキサメタゾンは糖質コルチコイド受容体にぴったりと結合し、同じように体内の炎症を解消する遺伝子発現の変化を引き起こす。この活性のため、デキサメタゾンはCOVID-19の治療において特に効果的である。なぜなら、コロナウイルスによる損傷はウイルス自体によるものだけではなく、制御できない炎症によるものでもあるからである。ところが、デキサメタゾンの抗炎症効果は、使い方や時期を誤ると害をおよぼしかねない。COVID-19の初期段階において、身体はウイルスを撃退するために免疫系を動員する必要があるので、初期の重症ではない患者にデキサメタゾンを使うと、うかつにも患者の状態を悪化させてしまうかもしれない。

糖質コルチコイドの合成副腎皮質ホルモンであり、グルココルチコイド受容体にリガ ..

末梢器官の概日時計は、代謝の合図によって設定される。Lamiaら(Bassによる解説記事も参照)は、概日時計が代謝を調節するかどうかについて検討し、概日時計の構成成分であるクリプトクロムタンパク質のCry1とCry2が、グルココルチコイド受容体などのさまざまな核内ホルモン受容体と相互作用することを見出した。Cry1のグルココルチコイド受容体との相互作用は、合成グルココルチコイドであるデキサメタゾンによって増強され、グルココルチコイド受容体のルシフェラーゼレポーター遺伝子に対する転写活性化能を低下させた。野生型マウスの線維芽細胞と比べて、両クリプトクロムを欠損するマウス(cry1-/-;cry2-/-)の線維芽細胞をデキサメタゾン処理すると、転写抑制される遺伝子の数が減少し、転写活性化される遺伝子が増加し、特定の標的遺伝子(sgk1、血清/グルココルチコイド調節キナーゼ1をコードする)の転写活性化の程度が増大した。夜間には、糖新生酵素ホスホエノールピルビン酸カルボキシキナーゼ1をコードする遺伝子pck1の発現を誘導するグルココルチコイドの効果が低下しており、デキサメタゾン処理後の夜間には、pck1プロモーター内のグルココルチコイド応答配列へのCry1やCry2の結合が増加した。さらに、デキサメタゾンによって引き起こされるpck1の発現誘導は、cry1-/-;cry2-/-マウスの肝臓において、野生型マウスの肝臓と比べて増加した。cry1-/-;cry2-/-マウスでは、野生型マウスと比べて、長期デキサメタゾン処理による内因性コルチコステロン産生抑制の程度が小さかったことから、クリプトクロムが、グルココルチコイド合成を抑制するネガティブフィードバックに関与することが示唆される。また、長期デキサメタゾン処理によって、cry1-/-;cry2-/-マウスでは野生型マウスと比べて、より顕著な空腹時高血糖と耐糖能異常も誘発された。このように、クリプトクロムは、グルココルチコイド受容体を介する転写を抑制することによって、グルコース代謝を抑制する。

(serum albumin)は血漿の中で最も豊富に見られるタンパク質だが、デキサメタゾンも他の薬やホルモンと同様にこの血清アルブミンによって身体全体に運ばれる。ところがこのタンパク質に関する因子のため、COVID-19に関連する炎症を治療するときに安全で効果的となるようデキサメタゾンを投与するのは難しい。例えば、糖尿病の患者では、タンパク質中の重要なアミノ酸に対して糖化(glycation)の過程を経て糖分子が結合していることがよくある。こうなると薬のタンパク質への結合が妨げられことがある。イブプロフェン(ibuprofen)のような一般的鎮痛剤なども血清アルブミン上にある同じ結合部位を使い競合するので、同時に服用するとデキサメタゾンの輸送が妨げられる。さらに、肝臓病、栄養失調、高齢などのCOVID-19の危険因子に加え、ウイルス自身も患者の血清アルブミン濃度を下げることがある。この複雑な事情により、内科医が血中におけるデキサメタゾンの遊離:結合の相対比を見積もり、薬の毒性増加、副作用、薬効の低下を招く可能性について判断するのは難しくなっている。

上段にヒト脂肪組織及び副腎におけるミンラロコルチコイド受容体(MR)及びグルココルチコイド受容体(GR)mRNA ..

デキサメタゾンが結合した構造(左、PDBエントリー)とコルチゾールが結合した構造(右、PDBエントリー)の両方についてリガンド結合ドメインの構造が得られている。これらのリガンドは構造が非常によく似ていて、糖質コルチコイド受容体の同じ窪みに結合する。リガンドは原子種ごとに色分けした球で、糖質コルチコイド受容体は緑のリボンモデルで示している。これらの構造をより詳しく見るため、図の下のボタンをクリックし対話的操作のできる図に切り替えてみて欲しい。